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Variable-length stop-feedback (VLSF) codes

Variable-length: Decoding at arbitrary times τ ∈ {0, 1, 2, . . . }

Stop-feedback ∈ {0 = continue, 1 = stop}
Earlier decoding when the noise is low, later decoding when the noise is high
=⇒ High reliability

Feedback at each time instant is impractical!
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VLSF codes with K =∞ vs. K <∞

VLSF code (K =∞): Impractical!

Transmitter constantly listens to the feedback signal
High feedback rate: 1 bit/channel use

VLSF code with K <∞ decoding times

Sporadic feedback
Practical codes: Incremental redundancy hybrid automatic repeat request codes
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Prior work: K =∞

[Burnashev (1976)]: error exponent − lnPe
E[τ ] for DMCs

[Polyanskiy et al. (2011)]: VLSF codes for DMCs under non-vanishing error value ε

lnM∗(N, 1, ε) = NC −
√
NVQ−1(ε) + O(lnN)

NC

1− ε
− lnN + O(1) ≤ lnM∗(N,∞, ε) ≤ NC

1− ε
+ O(1)

where C = capacity, V = dispersion, M∗(N,K , ε) = maximum achievable message size
compatible with average decoding time N, average error probability ε and K decoding
times
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Prior work: K <∞

[Vakilinia et al. (2016)]: VLSF codes with K decoding times for LDPC codes over the
binary-input Gaussian channel

To minimize N, they estimate mean and variance of τ through simulation and use
Gaussian approximation for τ

P [τ ≤ n] ≈ Q

(
E [τ ]− n√

Var [τ ]

)

Given a fixed n1, the decoding times n2, . . . , nK are computed using a recursive formula,
which results from differential equations ∂N

∂ni
= 0

Then they search for the optimal n1 =⇒ sequential differential optimization
They do not solve the problem analytically =⇒ no second-order analysis
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Channel model

Memoryless Gaussian channel: the channel output at time i is

Yi = Xi + Zi

Zi ∼ N (0, 1),

where Zi ’s are i.i.d. and Xi and Zi are independent.
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Code definition

Definition
An (N, {ni}Ki=1,M, ε,P) VLSF code comprises

1 encoding functions fn : [M]→ R, n = 1, . . . , nK :

f(m)nK , (f1(m), . . . , fnK (m))

2 a random stopping time τ ∈ {n1, . . . , nK}
3 K decoding functions gnk : R

nk → [M] for k ∈ [K ]

4 a common randomness between the transmitter and the receiver

such that

Maximal power constraint: ‖f(m)nk ‖2 ≤ nkP ∀m ∈ [M], k ∈ [K ]

Average decoding time: E [τ ] ≤ N

Average error probability: P [gτ (Y τ ) 6= W ] ≤ ε

where the message W is uniformly distributed on the set [M].
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Main Result

Theorem (Achievability)
Fix K ≥ 2, P > 0 and ε ∈ (0, 1). For the Gaussian channel

lnM∗ (N,K , ε,P) ≥ NC(P)

1− ε −
√

N ln(K−1)(N)
V (P)

1− ε + o(
√
N)

The decoding times satisfy n1 = 0 and the equations

lnM∗ (N,K , ε,P) = nkC(P)−
√

nk ln(K−k+1)(nk)V (P)− ln nk + O(1)

for k ∈ {2, . . . ,K}.

C(P) = 1
2 ln(1+ P) = capacity, V (P) = P(P+2)

2(1+P)2 = dispersion

ln(K)(·) , ln(ln(. . . (ln(·))))︸ ︷︷ ︸
K times

Bottom-line: We derive an achievability bound and optimize the choices of the decoding times n1, . . . , nK
to minimize average decoding time N for the given ε and M.
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Example: ε = 10−3, P = 1

200 400 600 800 1000 1200 1400 1600 1800 2000
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Comparison with prior work in extreme scenarios

2 ≤ K <∞, maximal power:

lnM∗ (N,K , ε,P) ≥ NC(P)

1− ε −
√

N ln(K−1)(N)
V (P)

1− ε + o(
√
N)

K = 1, maximal power:
[Polyanskiy et al. (2010) and Tan-Tomamichel (2015)]

lnM∗ (N, 1, ε,P) = NC(P)−
√

NV (P)Q−1(ε) +
1
2
lnN + O(1)

K =∞, average power:
[Truong-Tan (2018)]

lnM∗(N,∞, ε,P)ave ≥
NC(P)

1− ε − lnN + O(1)

lnM∗(N,∞, ε,P)ave ≤
NC(P)

1− ε +
hb(ε)

1− ε
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Random encoder design

We generate M i.i.d. codewords of length-nK so that maximal power constraint is satisfied with equality
for each nk , and the subcodewords are drawn independent of each other.
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Decoder design: Polyanskiy et al. (2011)

With probability ≈ ε, do not transmit any symbols and decode to an arbitrary message at time n1 = 0.

With probability ≈ 1− ε, transmit symbols and use
Threshold decoder: Decode at the first time nk ∈ {n2, . . . , nK} s.t. ı(f(m)nk ;Y nk ) ≥ γ for some m.

information density︷ ︸︸ ︷
ı(xn; yn) , ln

PY n|Xn (yn|xn)

PY n (yn)

Goal: optimize n2, . . . , nK .
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Optimizing decoding times n2, . . . , nK to minimize N

(N ′, εN): average decoding time and error probability given τ > n1

min N(n2, . . . , nK , γ) =
N ′(1− ε)
1− εN

s.t. N ′ = n2 +
K−1∑
i=2

(ni+1 − ni )P [τ > ni ]

εN = P [ı(X nK ;Y nK ) < γ] +M exp{−γ}

Find the optimal (n∗2, . . . , n
∗
K , γ

∗) by solving ∇N = 0.
The optimal ε∗N = 1√

N lnN
.
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N ′(1− ε)
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s.t. N ′ = n2 +
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i=2

(ni+1 − ni )Q

(
niC (P)− γ√

niV (P)

)
(1+ o(1))

εN = Q

(
nKC (P)− γ√

nKV (P)

)
(1+ o(1)) +M exp{−γ}

Using moderate deviations theorem

Find the optimal (n∗2, . . . , n
∗
K , γ

∗) by solving ∇N = 0.
The optimal ε∗N = 1√

N lnN
.
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Conclusion

We derived a second-order achievability bound for VLSF codes with K decoding times and
optimized the values of K decoding times.

Our theorem suggests that using K > 4 decoding times is not very beneficial.
We drew independent subcodewords, each drawn uniformly on a power sphere.
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Future work

Improve the converse result for K <∞ and maximal power constraint.

Investigate maximal power constraint vs. average power constraint for VLSF codes with
K =∞.

NC (P)

1− ε
− lnN + O(1) ≤ lnM∗ave(N,∞, ε,P) ≤

NC (P)

1− ε
+ O(1)

We show for the maximal power constraint:

lnM∗(N,∞, ε,P) ≥ NC (P)

1− ε
− O(

√
N)
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