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@ Earlier decoding when the noise is low, later decoding when the noise is high
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@ Variable-length: Decoding at arbitrary times 7 € {0,1,2,...}

@ Stop-feedback € {0 = continue, 1 = stop}

@ Earlier decoding when the noise is low, later decoding when the noise is high

= High reliability

@ Feedback at each time instant is impractical!
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VLSF codes with K = co vs. K < 0o

@ VLSF code (K = 00): Impractical!

j : Stop-feedback P
Transmitter «— —
0 () 0 0 01

L]
Decoding times 0 1 2
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@ VLSF code (K = 00): Impractical!
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VLSF codes with K = co vs. K < 0o

@ VLSF code (K = 00): Impractical!

L]
Decoding times 0 1 2

j : Stop-feedback P
Transmitter «— —
0 () 0 0 01

o Transmitter constantly listens to the feedback signal
o High feedback rate: 1 bit/channel use

@ VLSF code with K < oo decoding times

Decoding times ny ny T="n3 Ny Nk

Transmitter < 0 0

o Sporadic feedback
o Practical codes: Incremental redundancy hybrid automatic repeat request codes
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@ [Burnashev (1976)]: error exponent }E"[‘T']De for DMCs

@ [Polyanskiy et al. (2011)]: VLSF codes for DMCs under non-vanishing error value €

In M*(N,1,€) = NC — VNVQ *(e) + O(In N)

NC NC
T —InN+0(1) < InM*(N,00,¢) < 7— + O(1)

— —€
where C = capacity, V = dispersion, M*(N, K, €) = maximum achievable message size
compatible with average decoding time N, average error probability € and K decoding
times
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e [Vakilinia et al. (2016)]: VLSF codes with K decoding times for LDPC codes over the
binary-input Gaussian channel

VLSF codes with K decoding times Recep Can Yavas et al. July 12-20, 2021 5/ 16



e [Vakilinia et al. (2016)]: VLSF codes with K decoding times for LDPC codes over the
binary-input Gaussian channel

@ To minimize N, they estimate mean and variance of 7 through simulation and use

Gaussian approximation for T
Elr] —
Phgﬂzo<wn>

\/Var [7]
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Gaussian approximation for T
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Phgﬂzo<wn>

\/Var [7]

@ Given a fixed np, the decoding times no, ..., nkx are computed using a recursive formula,

which results from differential equations % =0
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e [Vakilinia et al. (2016)]: VLSF codes with K decoding times for LDPC codes over the
binary-input Gaussian channel

@ To minimize N, they estimate mean and variance of 7 through simulation and use

Gaussian approximation for T
E[r]—n
Plr<n|l= —_—
[r=n~Q < Var[*r])

@ Given a fixed np, the decoding times no, ..., nkx are computed using a recursive formula,

which results from differential equations % =0

@ Then they search for the optimal n; = sequential differential optimization
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e [Vakilinia et al. (2016)]: VLSF codes with K decoding times for LDPC codes over the
binary-input Gaussian channel

@ To minimize N, they estimate mean and variance of 7 through simulation and use

Gaussian approximation for T
Elr]—n
Plr<n~q (="
\/Var [7]
@ Given a fixed np, the decoding times no, ..., nkx are computed using a recursive formula,
which results from differential equations % =0
@ Then they search for the optimal n; = sequential differential optimization

@ They do not solve the problem analytically = no second-order analysis
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Channel model

@ Memoryless Gaussian channel: the channel output at time i is

Yi=Xi+ 2
Z;NN(O,I),

where Z;'s are i.i.d. and X; and Z; are independent.
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Code definition

An (N, {n;}£,, M, e, P) VLSF code comprises
@ encoding functions f,: [M] = R, n=1,...,nk:

f(m)™ = (fi(m), ..., fn (m))

4
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© K decoding functions gy, : R™ — [M] for k € [K]
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Code definition

An (N, {n;}£,, M, e, P) VLSF code comprises
@ encoding functions f,: [M] = R, n=1,...,nk:

f(m)™ = (fi(m), ..., fn (m))

@ a random stopping time 7 € {n1, ..., nk}
© K decoding functions gy, : R™ — [M] for k € [K]

@ a common randomness between the transmitter and the receiver

4
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Code definition

An (N, {n;}£,, M, e, P) VLSF code comprises
@ encoding functions f,: [M] = R, n=1,...,nk:

f(m)™ = (fi(m), ..., fn (m))

@ a random stopping time 7 € {n1, ..., nk}
© K decoding functions g, : R™ — [M] for k € [K]
@ a common randomness between the transmitter and the receiver
such that
Maximal power constraint:  [|f(m)™|> < mP Vm e [M], k € [K]

Average decoding time: E[r] < N
Average error probability: Plg,(Y7) # W] <e

where the message W is uniformly distributed on the set [M].

4
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Main Result

Theorem (Achievability)
Fix K>2, P> 0 and e € (0,1). For the Gaussian channel

InM*(N,K,e, P) > NC(P) \/Nln(K_l)(N)% + o(VN)

The decoding times satisfy n1 = 0 and the equations

InM* (N, K, e, P) = mC(P) =/ mi Ing ey (m) V(P) = In i + O(1)

for k € {2,...,K}.

C(P) = 1 In(1+ P) = capacity, V(P) = ((1?;—92)2 = dispersion
Ingoy (1) £ A In(In(... (In(+))))

K times

@ Bottom-line: We derive an achievability bound and optimize the choices of the decoding times ny, ..., nk
to minimize average decoding time N for the given € and M.
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Example: e =103, P =1
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Example: e =103, P =1

K=o
and average power
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@ Diminishing performance improvement as K increases!
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Example: e =103, P =1

Converse for K = oo and average power

K=o
and average power
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@ Diminishing performance improvement as K increases!
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Comparison with prior work in extreme scenarios

@ 2 < K < oo, maximal power:

|nM*(N,K,e,P)2’\iC£’:) \/Nan 1(N)V(P)Jro(\f)
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Comparison with prior work in extreme scenarios

@ 2 < K < oo, maximal power:

|nM*(N,K,e,P)2’\iC£’:) \/Nan 1(N)V(P)Jro(\f)

@ K =1, maximal power:
[Polyanskiy et al. (2010) and Tan-Tomamichel (2015)]

InM* (N,1,¢e, P) = NC(P) — /NV(P)Q *(e) + % InN + O(1)
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Comparison with prior work in extreme scenarios

@ 2 < K < oo, maximal power:

|nM*(N,K,e,P)2’\iC£’:) \/Nan 1(N)V(P)Jro(\f)

@ K =1, maximal power:
[Polyanskiy et al. (2010) and Tan-Tomamichel (2015)]

InM* (N,1,¢e, P) = NC(P) — /NV(P)Q *(e) + % InN + O(1)

@ K = 00, average power:
[Truong-Tan (2018)]

In M*(N, 00, €, P)ave > "iC(P) In N+ O(1)
In M* (N, 00, €, P)ave < NC(P) + hb7(5)
1—c¢ 1—¢
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Random encoder design

@ We generate M i.i.d. codewords of length-nk so that maximal power constraint is satisfied with equality
for each nk, and the subcodewords are drawn independent of each other.

Subcodeword 1

Subcodeword 2

Subcodeword K — 1

n1:0

n, ns

Nk Nng

n, dim. sphere
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Decoder design: Polyanskiy et al. (2011)

@ With probability = €, do not transmit any symbols and decode to an arbitrary message at time n; = 0.

W.p. =e | ‘ ‘

T=M nyp =0 ny ns ng-_1 ng
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Decoder design: Polyanskiy et al. (2011)

@ With probability = €, do not transmit any symbols and decode to an arbitrary message at time n; = 0.

W.p. =e | ‘ ‘

T=M nyp =0 ny ns ng-_1 ng

@ With probability &~ 1 — ¢, transmit symbols and use
Threshold decoder: Decode at the first time ng € {n2,...,nk} s.t. o(f(m)™; Y"™) > ~ for some m.

information density

n,_.n A PY"|X"(yn‘Xn)
o(x"y") =ln TPy
W.p. =~1—¢ ‘ ‘ ‘
Tom ny =0 ng ng NK-1 ng

VLSF codes with K decoding times Recep Can Yavas et al. July 12-20, 2021 12/ 16



Decoder design: Polyanskiy et al. (2011)

@ With probability = €, do not transmit any symbols and decode to an arbitrary message at time n; = 0.

W.p. =e | ‘ ‘

T=M nyp =0 ny ns ng-_1 ng

@ With probability &~ 1 — ¢, transmit symbols and use
Threshold decoder: Decode at the first time ng € {n2,...,nk} s.t. o(f(m)™; Y"™) > ~ for some m.

information density

o(x"y") Zln 7Pyn|xn(y"\x")
’ Pyn(y")
W.p. =~1—¢ ‘ ‘ ‘
Tom n; =0 n3 ng NK-1 nK
@ Goal: optimize na, ..., nk.
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Optimizing decoding times ny, ..., ng to minimize N

e (N, epn): average decoding time and error probability given 7 > ny

N(1—
min  N(ny,...,nk,v) = g
1—epn
K-1
st. N =ny+ Z(n;+1 —ni)P[r > nj]
i=2

en = P[o(X" V™) <]+ Mexp{—7}
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Optimizing decoding times ny, ..., ng to minimize N

@ (N ep): average decoding time and error probability given 7 > n;

min  N(n2,...,nk,7) = Nl’(i;ve)
st. N =np+ Kz_l(niﬂ - n)Q (nIC(PM> (14 0(1))
i=> n,V(P)

ew=0Q (%) (1 +0(1) + Mexp{—7)

Using moderate deviations theorem
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Optimizing decoding times ny, ..., ng to minimize N

e (N, epn): average decoding time and error probability given 7 > ny

min  N(na,...,nk,7) = Nl’(ieNe)
K1 n,C(P) —’y)
st. N=nm+» (ny1—n)Q ( (1+0(1))
2 2 v )

ev=Q (%) (1+ 0(1)) + Mexp{—~}

o Find the optimal (n3, ..., nk,~*) by solving VN = 0.
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Optimizing decoding times ny, ..., ng to minimize N

e (N, epn): average decoding time and error probability given 7 > ny

min  N(na,...,nk,7) = Nl’(ieNe)
K1 n,C(P) —’y)
st. N=nm+» (ny1—n)Q ( (1+0(1))
2 2 v )

ev=Q (%) (1+ 0(1)) + Mexp{—~}

o Find the optimal (n3, ..., nk,~*) by solving VN = 0.
1

@ The optimal €}, = NI
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Conclusion

@ We derived a second-order achievability bound for VLSF codes with K decoding times and
optimized the values of K decoding times.

VLSF codes with K decoding times Recep Can Yavas et al. July 12-20, 2021 14/ 16



Conclusion

@ We derived a second-order achievability bound for VLSF codes with K decoding times and
optimized the values of K decoding times.

@ Our theorem suggests that using K > 4 decoding times is not very beneficial.
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Conclusion

@ We derived a second-order achievability bound for VLSF codes with K decoding times and
optimized the values of K decoding times.

@ Our theorem suggests that using K > 4 decoding times is not very beneficial.

@ We drew independent subcodewords, each drawn uniformly on a power sphere.
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Future work

@ Improve the converse result for K < oo and maximal power constraint.
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@ Improve the converse result for K < oo and maximal power constraint.

@ Investigate maximal power constraint vs. average power constraint for VLSF codes with
K = oo.

M—InN—{—O(l)SInM*

NC(P
ave(Naoove? P) S ( )

1—c¢ 1—c¢

+ 0(1)

We show for the maximal power constraint:

In M*(N, 00, €, P) > ’\ic_(’:) — O(V'N)

VLSF codes with K decoding times Recep Can Yavas et al. July 12-20, 2021 15/ 16



References

o V. Burnashev, “Data transmission over a discrete channel with feedback: Random transmission time," Problems of Information
Transmission, vol. 12, no. 4, pp. 10-30, 1976.

L. V. Truong and V. Y. F. Tan, “On Gaussian macs with variable-length feedback and non-vanishing error probabilities,” IEEE Trans. on
Inf. Theory., vol. 64, no. 4, p. 2333-2346, Apr. 2018.

Y. Polyanskiy, H. V. Poor, and S. Verdu,"Feedback in the non-asymptotic regime," IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4903-4925,
Aug. 2011.

Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307—2359, May 2010.

V. Y. F. Tan and M. Tomamichel, “The third-order term in the normal approximation for the AWGN channel,” IEEE Transactions on
Information Theory, vol. 61, no. 5, pp. 2430-2438, May 2015.

K. Vakilinia, S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel, "Optimizing transmission lengths for limited feedback with non-binary
LDPC examples", IEEE Transactions on Communications, vol. 64, no. 6,pp. 2245-2257, 2016.

©0 0000

R. C. Yavas, V. Kostina, and M. Effros, “Variable-length Feedback Codes with Several Decoding Times for the Gaussian Channel,” ISIT,
2021. Available at: https://arXiv:2103.09373.

K decoding times Recep Can Yavas et al. July 12-20, 2021 16/ 16


https://arXiv:2103.09373.

